

DO and Tevatron results on the standard model Higgs boson using the full Run 2 data

Lidija Živković,

LPNHE, Paris VI & VII

on behalf of the

and

collaborations

Joint Experimental-Theoretical Seminar, Fermilab 22 March 2013

Outline

- Current status
- Overview of the DO search channels
- D0 results
 - Combinations of different channels
- Tevatron results
 - DO and CDF combinations
 - Constraints on couplings

Introduction

- SM Higgs boson mass is constrained indirectly through precision measurements
 - self-energy corrections to the W mass depend on the mass of the top quark and Higgs boson, which are both precisely measured at Tevatron

- Global SM electroweak fits provide upper limit
 - The best fit gives $m_H = 94^{+29}_{-24} GeV$
 - Limit from fit $m_H < 152 \text{ GeV}$

Historical perspective

- LEP (1989 2000): m_H > 114.4 GeV@95% CL
- At hadron colliders:
- Tevatron Run II (2002-2011):
 - First post-LEP exclusion (2009)
 - First evidence of a Higgs-like particle decaying to a pair of b-quarks (July 2012)
- LHC (2009 2012):
 - Excluded wide mass range (111 122 GeV and 127 600 GeV)
 - Discovered the new Higgs-like boson mainly through $\gamma\gamma$ and ZZ decays (July 2012)

L. Ž. Higgs boson at Tevatron

Current situation

- LHC (2009 2012):
 - Since July 2012 progress in each channel
 - Observation confirmed in bosonic channel
 - ATLAS: $m_H = 125.5 \pm 0.2 \text{ (stat)} -0.6+0.5 \text{ (sys)} \text{ GeV}$
 - CMS: $m_{H} = 125.8 \pm 0.4 \text{ (stat)} \pm 0.4 \text{ (sys)} \text{ GeV}$
 - H \rightarrow bb with ~18 fb⁻¹ data deficit at Atlas and ~2.2 s.d. excess at CMS

As presented at

Moriond and Aspen

Tevatron Data Taking

Tevatron Data Taking

Production at Tevatron ...

- Dominant production is gluon-gluon fusion (ggH)
- Significant contribution from associated production (VH)

... and Decay

- Dominant decay to:
 - bb for $m_{H} < 135 GeV$
 - WW for $m_{H} > 135 GeV$

Backgrounds

- We model background processes with Alpgen+Pythia, Pythia and CompHEP
- Normalized with the highest order cross section available (NLO or better)

L. Ž. Higgs boson at Tevatron

How did we search?

How did we search?

How did we search?

- Extract tiny signal from huge background
- Use efficient and well understood triggers
- Optimize lepton ID, use multivariate techniques (MVA) to identify leptons and various lepton categories
- Optimize b-id, use MVA and multiple btagging categories
- Use advanced MVA techniques to further separate signal from background
- Validate search with measurement of known SM processes

Overview of the DO results

CDF results presented by T. Junk on January 18th: http://theory.fnal.gov/jetp/talks/wc_trj_cdfhiggs_18jan_pub.pdf

Overview of the channels at DO

DØ	Luminosity (fb ⁻¹)	M_H (GeV)	Reference	
$WH \rightarrow \ell \nu bb$	9.7	90-150	Phys. Rev. Lett. 109, 121804 (2012); Acc by PRD arXiv:1301.6122	
$ZH \rightarrow \ell\ell b\bar{b}$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012); Sub to PRD arXiv:1303.3276	
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100-150	Phys. Lett. B 716, 285 (2012)	
$H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$	9.7	100-200	Acc by PRD arXiv:1301.1243	
$H + X \to WW \to \mu^{\pm} \tau_h^{\mp} + \leq 1$ jet	7.3	155-200	Phys. Lett. B 714, 237 (2012)	
$H \rightarrow W^+W^- \rightarrow \ell\nu q'\bar{q}$	9.7	100-200	Acc by PRD arXiv:1301.6122	
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	100-200	Sub to PRD arXiv:1302.5723	
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100-200	Sub to PRD arXiv:1302.5723	
$VH \rightarrow \ell \nu q' \bar{q} q' \bar{q}$	9.7	100-200	Acc by PRD arXiv:1301.6122	
$VH \rightarrow \tau_h \tau_h \mu + X$	8.6	100-150	Sub to PRD arXiv:1302.5723	
$H + X \rightarrow \ell \tau_h j j$	9.7	105 - 150	Acc by PRD arXiv:1211.6993	
$H \rightarrow \gamma \gamma$	9.7	100–150	Acc by PRD, arXiv:1301.5358	

D0 combination:

H → bb:

- Phys. Rev. Lett. 109, 121802 (2012)

All channels:

- Submitted to PRD arXiv:1303.0823
- All new papers will be in a single issue of PRD

$$H \rightarrow \gamma \gamma$$

- Updated data quality requirement
- Narrow resonance on top of a smoothly falling background in the $m_{\gamma\gamma}$ spectrum: Measured mass resolution 3.1 GeV @ m_H =125 GeV
- Multiple stages of MVA:
 - Neural Network to select loose photons, and then to define two independent samples, γ -enriched and jet-enriched
 - Boosted Decision Trees to further separate signal from backgrounds
- Exp. (obs.) sensitivity @125 GeV: 8.7*SM (12.8*SM)

$$H \rightarrow \tau \tau$$

- Combine analyses with $H \rightarrow \tau \tau$:
 - VH $\rightarrow \mu \tau \tau$ added ~20% more data, optimized
 - $H+X \rightarrow I\tau + 2 \text{ jets}$ added
- They include some contribution from H→WW
 - Use dedicated MVA to separate different contributions
- Exp. (obs.) @125 GeV: 7.25 (10.84)*SM (~60% improvement from ICHEP'12)

$$H \rightarrow WW$$

$H \rightarrow WW$

- The most sensitive channel for m_{μ} > 135 GeV
- Split according to the decay mode of the W
 - Dilepton channels have low branching ratios thus low yield, but also low backgrounds
 - Semileptonic channels must contend with large V+jets backgrounds
- Split according to the production mode ggH,
 VBF and VH
 - Split opposite-sign dilepton and semileptonic channels into different jet multiplicities
 - Include a search for the same-sign leptons, where one originates from associated W
 - Include final states with three leptons

Associated production with W, WH → WWW is important for coupling measurement;

It probes coupling to the W boson only!

- Refined selection; splitting to WW enriched and depleted regions for H → WW → evµv
- Signatures:

 - => Lepton identification improved over years to allow for more efficient selection
- Use multiple MVA to reject different backgrounds

- Remove most of the Z(+jets) → II
- Use dedicated MVA to separate samples into WW enriched and WW depleted regions

Validation with diboson measurement

- Use identical selection and similar MVA
 Use WW process as a signal in training
- Measured cross section: (1.02±0.06)*5M

Other H -> WW searches

- Included semileptonic decays of W, and also associated production:
 - H→ WW → Ivjj added ~80% of data
 - VH → VWW → lv+4 jets optimized
 - $VH \rightarrow VVV \rightarrow III+X$ added ~12% of data
 - $VH \rightarrow VWW \rightarrow e^{\pm}\mu^{\pm}+X$ optimized

H -> WW result

- Dilepton channel only:
- Excludes (expect):
 159-176 (156-172) GeV
- Sensitivity @125 GeV: exp 3.4; obs 4.1

DØ, 9.7 fb⁻¹, II + E_T

— Observed Limit Expected ±1 s.d.

Expected ±2 s.d.

100 120 140 160 180 200 M_H (GeV)

- Full D0 H→ WW:
- Excludes (expect):
 157-178 (155-175) GeV
- Sensitivity @125 GeV
 exp 2.9; obs 4.6

Gain 15%

Log Likelihood Ratio (LLR)

$$LLR = -2\ln\frac{P(s+b)}{P(b)}$$

P - Poisson likelihood of B or S+B hypothesis

- The separation between LLR $_{\rm b}$ (background-only hypothesis) and LLR $_{\rm s+b}$ (signal-plus-backgroundhypothesis) provides a measure of the discriminating power of the search
- The width of the LLR_b , distribution (1 s.d. and 2 s.d. bands) provides an estimate of how sensitive the analysis is to a signal-like background fluctuation in the data, taking account of the presence of systematic uncertainties
- The value of LLR_{obs} relative to LLR_{s+b} and LLR_b indicates whether the data distribution appears to be more like signal-plus-background or background-only.

 $VH \rightarrow Vbb$

- ZH → Ilbb 2 leptons + 2 b-jets
- Modeling of the Z+jets background;
 rejection of the tt background
- WH → lvbb 1 lepton + MET + 2 b-jets
- Modeling of the W+jets backgrounds
- Modeling and rejection of the multijet backgrounds

- ZH → vvbb MET + 2 b-jets (contribution from WH also)
- Background modeling and rejection

- Key ingredients:
 - Lepton, jet and \mathbb{E}_{T} reconstruction
 - Jet energy resolution => $\Delta m/m \sim 15\%$
 - b-tagging
 - Multivariate techniques to reject

backgrounds

	Before	2 loose
	b-tagging	tags
s/b	1/7000	1/1400

- Key ingredients:
 - Lepton, jet and \mathbb{E}_{T} reconstruction
 - Jet energy resolution => $\Delta m/m\sim15\%$
 - b-tagging
 - Multivariate techniques to reject

backgrounds

	Before	2 med
	b-tagging	tags
s/b	1/7000	1/400

- Key ingredients:
 - Lepton, jet and E_{τ} reconstruction
 - Jet energy resolution => $\Delta m/m\sim15\%$
 - b-tagging
 - Multivariate techniques to reject

backgrounds

	Before	2 tight
	b-tagging	tags
s/b	1/7000	1/200

- Key ingredients:
 - Lepton, jet and E₊ reconstruction
 - Jet energy resolution (15%)
 - b-tagging: eff 50-80%; mis id 1-10%
 - Multivariate techniques to reject backgrounds
 - Either to split into two regions or to remove background

Validation of results

- Measure cross section of the known process with the same final state
 - Smaller cross section for Higgs production (~7 times)
 - Diboson signal peaks at lower masses
- Apply similar analysis
- Measured cross section: $(0.73\pm0.32)*SM$

MH = 125 GeV	$VH \rightarrow Vbb$ [fb]	VZ →Vbb [fb]
vvbb	9	73
lvbb	16	105
llbb	3	24
Total	28	202

≥ 5000

്റ് 4500 ≈4000

<u>ഴ</u>3500 9000 E H.Z

 $W(\rightarrow \ell v)+2$ jets, Single and Double Tags

DØ. 9.7 fb⁻¹

Data

V+hf

Multiiet

ZH → vvbb

VH → Vbb results

Exp (obs) @125 GeV: • Exp (obs) @125 GeV: Exp (obs) @125 GeV: - 3.9(4.3)*SM - 4.7(4.8)*SM - 5.1(7.1)*SM $V(\rightarrow lv)+2$, 3 jets with 1 tight+2 b-tags Limit / $oldsymbol{\sigma}(poldsymbol{
ot} o ([W/Z]H) imes Br(H o boldsymbol{b})$ Limit / 𝔞(*pp→ZH*)×Br(*H→bb*) DØ, 9.5 fb⁻¹ Observed Limit WS / timit 10² DØ, 9.7 fb⁻¹ Observed Limit DØ, 9.7 fb Expected Limit ····· Expected Limit Observed (a) Expected ± 1 s.d. Expected ±1 s.d. Expected Expected ± 2 s.d. Expected ± 2 s.d. Expected ± 1 s.d Expected ± 2 s.d 95% CL 90 100 110 120 130 140 150 90 140 100 130 150 110 120 M_H (GeV) M_H (GeV) M_H (GeV)

 $WH \rightarrow lvbb$

 $ZH \rightarrow llb\overline{b}$

VH → Vbb results

• Expected sensitivity @125 GeV: 2.3*5M; observed 3.5*5M

DO combination

Combining all D0 channels: What does combined signal look like?

• Distribution of $\log_{10}(s/b)$, for the data from all contributing Higgs boson search channels

Sensitivity of the search

 Observe a broad excess between ~115 GeV and ~145 GeV consistent with a SM Higgs expectation

p-value for background hypothesis

- p-value for background hypothesis provides information about the consistency with the observed data
- Local p-value distribution for background only expectation:
 - DO: 1.7 s.d. (@125 GeV)

Signal Strength

- Best fit for the signal, signal strength, is consistent with SM within 1 s.d.
- @125 GeV: 1.40^{+0.92}_{-0.88}

Signal Strength

Best fit for the signal, signal strength, is consistent with SM within

1 s.d.

• @125 GeV: 1.40^{+0.92}_{-0.88}

Combined	$1.40^{+0.92}_{-0.88}$
$H o \gamma\gamma$	$4.20^{+4.60}_{-4.20}$
$H \rightarrow W^+W^-$	$1.90^{+1.63}_{-1.52}$
$H o au^+ au^-$	$3.96^{+4.11}_{-3.38}$
H o bar b	$1.23^{+1.24}_{-1.17}$

Tevatron combination

Overview of the searches

DØ	Luminosity (fb^{-1})	M_H (GeV)	Reference
$WH \rightarrow \ell \nu bb$	9.7	90-150	Phys. Rev. Lett. 109, 121804 (2012); Acc by PRD arXiv:1301.6122
$ZH \rightarrow \ell\ell b\bar{b}$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012); Sub to PRD arXiv:1303.3276
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100-150	Phys. Lett. B 716, 285 (2012)
$H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$	9.7	100-200	Acc by PRD arXiv:1301.1243
$H + X \to WW \to \mu^{\pm} \tau_h^{\mp} + \leq 1$ jet	7.3	155-200	Phys. Lett. B 714, 237 (2012)
$H \rightarrow W^+W^- \rightarrow \ell\nu q'\bar{q}$	9.7	100-200	Acc by PRD arXiv:1301.6122
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	100-200	Sub to PRD arXiv:1302.5723
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100-200	Sub to PRD arXiv:1302.5723
$VH \rightarrow \ell \nu q' \bar{q} q' \bar{q}$	9.7	100-200	Acc by PRD arXiv:1301.6122
$VH \rightarrow \tau_h \tau_h \mu + X$	8.6	100-150	Sub to PRD arXiv:1302.5723
$H + X \rightarrow \ell \tau_h jj$	9.7	105 - 150	Acc by PRD arXiv:1211.6993
$H \rightarrow \gamma \gamma$	9.7	100-150	Acc by PRD, arXiv:1301.5358
CDF			
$WH \rightarrow \ell \nu bb$	9.45	90-150	Phys. Rev. Lett. 109, 111804 (2012)
$ZH \rightarrow \ell\ell b\bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111803 (2012)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.45	90-150	Phys. Rev. Lett. 109, 111805 (2012); Acc. by PRD arXiv: 1301.4440
$H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$	9.7	110-200	FERMILAB-PUB-13-029-E, For submission to PRD
$H \rightarrow WW \rightarrow e\tau_h \mu \tau_h$	9.7	130-200	FERMILAB-PUB-13-029-E, For submission to PRD
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	110-200	FERMILAB-PUB-13-029-E, For submission to PRD
$H \rightarrow \tau \tau$	6.0	100-150	Phys. Rev. Lett. 108, 181804 (2012)
$H \rightarrow \gamma \gamma$	10.0	100-150	Phys. Lett. B 717, 173 (2012)
$H \rightarrow ZZ \rightarrow llll$	9.7	120-200	Phys. Rev. D 86 (2012) 072012
$t\bar{t}H \to WWb\bar{b}b\bar{b}$	9.45	100-150	Phys. Rev. Lett. 109 (2012) 181802
$VH o jjb\bar{b}$	9.45	100-150	JHEP 1302 (2013) 004

CDF combination:

H → bb:

- Phys. Rev. Lett. 109, 111802 (2012)

All channels:

- Submitted to PRD arXiv:1301.6668

• D0 combination:

H → bb:

- Phys. Rev. Lett. 109, 121802 (2012)

All channels:

- Submitted to PRD arXiv:1303.0823

Overview of the searches

DØ	Luminosity (fb^{-1})	M_H (GeV)	Reference
$WH \rightarrow \ell \nu bb$	9.7	90-150	Phys. Rev. Lett. 109, 121804 (2012); Acc by PRD arXiv:1301.6122
$ZH \rightarrow \ell\ell b\bar{b}$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012); Sub to PRD arXiv:1303.3276
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100-150	Phys. Lett. B 716, 285 (2012)
$H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$	9.7	100-200	Acc by PRD arXiv:1301.1243
$H + X \to WW \to \mu^{\pm} \tau_h^{\mp} + \leq 1$ jet	7.3	155-200	Phys. Lett. B 714, 237 (2012)
$H \rightarrow W^+W^- \rightarrow \ell\nu q'\bar{q}$	9.7	100-200	Acc by PRD arXiv:1301.6122
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	100-200	Sub to PRD arXiv:1302.5723
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100-200	Sub to PRD arXiv:1302.5723
$VH \rightarrow \ell \nu q' \bar{q} q' \bar{q}$	9.7	100-200	Acc by PRD arXiv:1301.6122
$VH \rightarrow \tau_h \tau_h \mu + X$	8.6	100-150	Sub to PRD arXiv:1302.5723
$H + X \rightarrow \ell \tau$	0.7	106 160	A h DDDV:1911 6009
$\overline{H \to \gamma \gamma}$ Tower track	. combine	+: :	a about to be automitted
CDF TEVAITOR	I COMDING	l north	s about to be submitted! ——
$WH \rightarrow \ell \nu b \bar{b}$	9.45	90-150	Phys. Rev. Lett. 109, 111804 (2012)
$ZH \rightarrow \ell\ell b\bar{b}$	9.45	90-150	Phys. Rev. Lett. 109, 111803 (2012)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111805 (2012); Acc. by PRD arXiv: 1301.4440
$H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$	9.7	110-200	FERMILAB-PUB-13-029-E, For submission to PRD
$H \rightarrow WW \rightarrow e\tau_h \mu \tau_h$	9.7	130-200	FERMILAB-PUB-13-029-E, For submission to PRD
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	110-200	FERMILAB-PUB-13-029-E, For submission to PRD

100 - 150

100 - 150

120 - 200

100 - 150

100 - 150

CDF combination:

 $H \rightarrow ZZ \rightarrow llll$

 $t\bar{t}H \rightarrow WWb\bar{b}b\bar{b}$

 $VH \rightarrow jjb\bar{b}$

H → bb:

 $H \rightarrow \tau \tau$

 $H \rightarrow \gamma \gamma$

- Phys. Rev. Lett. 109, 111802 (2012)

6.0

10.0

9.7

9.45

9.45

All channels:

- Submitted to PRD arXiv:1301.6668

D0 combination:

H → bb:

- Phys. Rev. Lett. 109, 121802 (2012)

Phys. Rev. Lett. 108, 181804 (2012)

Phys. Lett. B 717, 173 (2012)

Phys. Rev. D 86 (2012) 072012

Phys. Rev. Lett. 109 (2012) 181802

JHEP 1302 (2013) 004

All channels:

- Submitted to PRD arXiv:1303.0823

Validation with diboson measurement

Validation of results

- q W, Z V, V V, Z V, Z
- Measure cross section of the known process with the same final state
 - Smaller cross section for Higgs production (~7 times)
 - Diboson signal peaks at lower masses
- Apply similar analysis
- Measured cross section: (0.68±0.21)*5M

°S Te	evatror	Run I	I, L _{int} ≤	10 fb ⁻¹				
	+2 b-Ta							
(10 (_	_			-	— Data		
<u>√</u> 80000 —						WZ		
- Ken	_					ZZ		
ш6000	•	Ĭ.				Bkgd		
4000			•					
-			L					
2000			, e	i				
				parate	lesa.			
00	50	100	150	200	250	300	350	400
U	30	100	150	200		Dijet Ma		

MH = 125 GeV	$VH \rightarrow Vbb [fb]$	VZ →Vbb [fb]
vvbb	9	73
lvbb	16	105
llbb	3	24
Total	28	202

Combined results from Tevatron

Decay mode combinations

- H → γγ
 - Expected sensitivity @125 GeV of ~5.9*SM
 - ~ 2 s.d. excess in $H \rightarrow \gamma \gamma$

- H → ττ
 - Expected sensitivity @125 GeV of ~5.7*SM

Decay mode combinations

- H → WW:
 - Expected sensitivity @125 GeV of 2.04x5M
 - Very broad excess consistent with expectations (i.e., lack of mass peak due to escaping neutrinos)

Decay mode combinations

- VH → Vbb:
 - Expected sensitivity at m_{μ} ~125 GeV of 1.42xSM.
 - Broad excess consistent with dijet mass resolution

- Best fit
$$(\sigma_{WH} + \sigma_{ZH}) \times \mathcal{B}(H \rightarrow bb) = 0.19^{+0.08}_{-0.09} \text{ pb @125 GeV}$$

- To be compared with SM: $(\sigma_{WH} + \sigma_{ZH}) \times \mathcal{B}(H \rightarrow bb) = 0.12 \pm 0.01 \text{ pb}$

Combining all CDF and DO channels: What does combined signal look like?

• Distribution of $\log_{10}(s/b)$, for the data from all combining Higgs boson decay channels

Result of the SM combination

- Tevatron excludes (expect):
 90-109 (90-120) GeV and 149-182 (140-184) GeV @95% C.L.
- Exp. (obs) sensitivity @125 GeV: 1.06 (2.44)*SM

Sensitivity of the search

Observed broad excess in data

Sensitivity of the search

- Observed broad excess in data
 - Consistent with the assumption of the presence of the Higgs boson with a $m_{_{\rm H}}\text{=}125~\text{GeV}$ and a cross section of $\sim\!1.5\text{*SM}$

p-value for background hypothesis

- p-value for background hypothesis provides information about the consistency with the observed data
- Local p-value distribution for background only expectation:
 - 3.1 s.d. (@125 GeV)

Signal Strength

- Best fit for the signal, signal strength, is consistent with SM within 1 s.d.
- @125 GeV: 1.44^{+0.59}_{-0.56}

Signal strengths for various decays

DØ	Luminosity (fb ⁻¹)	M_H (GeV)	Reference
$WH \rightarrow \ell \nu bb$	9.7	90-150	Phys. Rev. Lett. 109, 121804 (2012); Acc by PRD arXiv:1301.6122
$ZH \rightarrow \ell\ell b\bar{b}$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012); Sub to PRD arXiv:1303.3276
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100-150	Phys. Lett. B 716, 285 (2012)
$H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$	9.7	100-200	Acc by PRD arXiv:1301.1243
$H + X \to WW \to \mu^{\pm} \tau_h^{\mp} + \leq 1$ jet	7.3	155-200	Phys. Lett. B 714, 237 (2012)
$H \rightarrow W^+W^- \rightarrow \ell\nu q'\bar{q}$	9.7	100-200	Acc by PRD arXiv:1301.6122
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	100-200	Sub to PRD arXiv:1302.5723
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100-200	Sub to PRD arXiv:1302.5723
$VH \rightarrow \ell \nu q' \bar{q} q' \bar{q}$	9.7	100-200	Acc by PRD arXiv:1301.6122
$VH \rightarrow \tau_h \tau_h \mu + X$	8.6	100-150	Sub to PRD arXiv:1302.5723
$H + X \rightarrow \ell \tau_h jj$	9.7	105 - 150	Acc by PRD arXiv:1211.6993
$H \rightarrow \gamma \gamma$	9.7	100–150	Acc by PRD, arXiv:1301.5358
CDF			
$WH \rightarrow \ell \nu bb$	9.45	90-150	Phys. Rev. Lett. 109, 111804 (2012)
$ZH \rightarrow \ell\ell b\bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111803 (2012)
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.45	90–150	Phys. Rev. Lett. 109, 111805 (2012); Acc. by PRD arXiv: 1301.4440
$H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\bar{\nu}$	9.7	110-200	FERMILAB-PUB-13-029-E, For submission to PRD
$H \rightarrow WW \rightarrow e\tau_h \mu \tau_h$	9.7	130-200	FERMILAB-PUB-13-029-E, For submission to PRD
$VH \rightarrow ee\mu/\mu\mu e + X$	9.7	110-200	FERMILAB-PUB-13-029-E, For submission to PRD
$H \rightarrow \tau \tau$	6.0	100-150	Phys. Rev. Lett. 108, 181804 (2012)
$H \rightarrow \gamma \gamma$	10.0	100–150	Phys. Lett. B 717, 173 (2012)
$H \rightarrow ZZ \rightarrow llll$	9.7	120-200	Phys. Rev. D 86 (2012) 072012
$t\bar{t}H \to WWb\bar{b}b\bar{b}$	9.45	100-150	Phys. Rev. Lett. 109 (2012) 181802
$VH \rightarrow jjb\bar{b}$	9.45	100-150	JHEP 1302 (2013) 004

• VH \rightarrow Vbb; H \rightarrow WW; H $\rightarrow \tau\tau$; H $\rightarrow \gamma\gamma$;

Signal strength for various decays

• Posterior probability densities for R = $(\sigma \times \mathcal{B})/SM$ from the combinations of all search channels

$m_H \; ({\rm GeV}/c^2)$	125
$R_{ m fit}({ m SM})$	$1.44^{+0.59}_{-0.56}$
$R_{ m fit}(H o W^+W^-)$	$0.94^{+0.85}_{-0.83}$
$R_{ m fit}(H o bar b)$	$1.59^{+0.69}_{-0.72}$
$R_{ m fit}(H o\gamma\gamma)$	$5.97^{+3.39}_{-3.12}$
$R_{ m fit}(H o au^+ au^-)$	$1.68^{+2.28}_{-1.68}$

Little history of Tevatron results

Data of 2008; up to 4.2 fb⁻¹

Data of mid 2009; up to 5.4 fb⁻¹

Time

Data of mid 2010; up to 5.9 fb⁻¹

Data of mid 2011; up to 8.6 fb⁻¹

Full data set; up to 10 fb-1

Higgs boson couplings to bosons and fermions

- Several production and decay mechanisms contribute to signal rates per channel => interpretation is difficult
- Simplified model, SM-like with the following:
 - Hff couplings are scaled together by $\kappa_{_{\rm f}}$
 - HWW coupling is scaled by $\kappa_{\rm w}$
 - HZZ coupling is scaled by $\kappa_{_{\!Z}}$
- For some studies, we scale the HWW and HZZ couplings by $\kappa_w = \kappa_z = \kappa_v$
- Standard Model is recovered if $\kappa_f = \kappa_W = \kappa_Z = 1$

Higgs boson couplings to bosons and fermions

- Follow the prescription from LHC Higgs cross section working group: arXiv:1209.0040
- Basic assumptions:
 - There is only one underlying state at $m_{H} \sim 125 \text{ GeV}$
 - It has negligible width
 - It is a CP even scalar (only allow for modification of coupling strengths, leaving the Lorentz structure of the interaction untouched)
 - No additional invisible or undetected Higgs decay modes

Constraining couplings

Scale cross sections for each process according to couplings

$$\sigma(gg \to H) = \sigma_{SM}(gg \to H)(0.95\kappa_f^2 + 0.05\kappa_f\kappa_V)$$

$$\sigma(VH, VBF) = \sigma_{SM}(VH, VBF)\kappa_V^2$$

Recompute all Higgs boson decay branching ratios from scaled partial widths

$$\Gamma(H \to VV) = \Gamma(H \to VV)_{SM} \kappa_V^2; (V = W, Z)$$

$$\Gamma(H \to ff) = \Gamma(H \to ff)_{SM} \kappa_f^2$$

$$\Gamma(H \to gg) = \Gamma(H \to gg)_{SM} (0.95 \kappa_f^2 + 0.05 \kappa_f \kappa_V)$$

$$\Gamma(H \to \gamma\gamma) = \Gamma(H \to \gamma\gamma)_{SM} |\alpha\kappa_V + \beta\kappa_f|^2$$

$$\alpha$$
=1.28; β =-0.21; from Spira et al. arXiv:hep-ph/9504378

 $\mathcal{BR}(H \to XX) = \frac{\Gamma(H \to XX)}{\Gamma_{TOT}}$

- => $H \rightarrow \gamma \gamma$ from destructive interference between the two contributions
- If any of the couplings is negative, interference becomes constructive
- => Larger rate of the H → YY

- Posterior probability distributions (a) vary κ_w ($\kappa_z = \kappa_f = 1$)
 - A negative sign of $\kappa_W^{}$ is preferred by the Tevatron data due to the excess in $H\to\gamma\gamma$
 - Best fit: $\kappa_w = -1.27$

(b) vary
$$\kappa_Z (\kappa_W = \kappa_f = 1)$$

- Searches at the Tevatron are sensitive almost exclusively to $(\kappa_Z)^2$ so the posterior density is nearly symmetric
- Best fit: $\kappa_z = \pm 1.05$

(c) vary
$$\kappa_f (\kappa_W = \kappa_Z = 1)$$

- Asymmetry due to H → YY
- Best fit: κ_f = -2.64 (large due to the excesses in $H \rightarrow \gamma \gamma$ and $VH \rightarrow Vbb$)

- Both κ_w and κ_z vary independently
 - κ_{f} integrated over
 - Best fit: $(\kappa_w, \kappa_7) = (1.25, \pm 0.90)$
- The point $(\kappa_W, \kappa_Z) = (0, 0)$ corresponds to no Higgs boson production or decay in the most sensitive search modes at the Tevatron and is not included within the 95% C.L. region due to the significant excess of events in the SM Higgs boson searches @ 125 GeV

- Probe $SU(2)_{V}$ custodial symmetry by measuring the ratio $\Lambda_{WZ} = \kappa_{W}/\kappa_{Z}$
 - Measure θ_{WZ} =tan⁻¹(κ_Z/κ_W)=tan⁻¹($1/\lambda_{WZ}$)
 - Measure: $|\theta_{WZ}| = 0.68^{+0.21}_{-0.41} \rightarrow \lambda_{WZ} = 1.24^{+2.34}_{-0.42}$

- Assuming that custodial symmetry holds, Λ_{WZ} = 1, allow both κ_{V} and κ_{f} to vary
- Asymmetry is from the excesses in the H → yy
- Two minima: $(\kappa_{V}, \kappa_{f})=(1.05,-2.40)$ and $(\kappa_{V}, \kappa_{f})=(1.05, 2.30)$
- The integral of the posterior density in the (+,+) quadrant is 26% of the total, while the remaining 74% of the integral of the posterior density is contained within the (+,-) quadrant

Summary on couplings

- Couplings to fermions: $\kappa_f = -2.64^{+1.59}_{-1.30}$
- Couplings to bosons:

$$\kappa_W = -1.27^{+0.46}_{-0.29}$$
; second interval 1.04 $< \kappa_W < 1.51$
 $\kappa_Z = \pm 1.05^{+0.45}_{-0.55}$

- if varied together: $(\kappa_w, \kappa_z) = (1.25, \pm 0.90)$
- For custodial symmetry: $|\theta_{WZ}| = 0.68^{+0.21}_{-0.41} \rightarrow \lambda_{WZ} = 1.24^{+2.34}_{-0.42}$
- If custodial symmetry is preserved: $(\kappa_v, \kappa_f) = (1.05, -2.40)$ and $(\kappa_v, \kappa_f) = (1.05, 2.30)$

Summary

- Tevatron has ended its 25 years' run on September 30th 2011
 - It ran more than 9 years at \sqrt{s} = 1.96 TeV
 - It delivered almost 12 fb⁻¹ during that period
 - We are grateful for all these data
- D0 finalized publications of all search channels
 - Broad data excess compatible with a Higgs boson with m_H = 125 GeV is observed in the two main channels, VH \rightarrow Vbb and H \rightarrow WW, as well as in the full combination

All results just submitted for publication:

http://www-d0.fnal.gov/d0_publications/d0_pubs_list_bytopic.html#higgs

Summary

- Both CDF and DO experiments performed very well
 - Improvements over the years led to the 95% C.L. exclusion sensitivity <~1.0×SM for m₁ < 185 GeV when combining two experiments
- 3.1 s.d. excess @125 GeV observed in data when combining from both experiments, consistent with LHC observation
- Signal strengths in all analyzed decay channels are consistent with SM Higgs expectation
- Results on Higgs couplings are also consistent with the SM predictions
- It is unlikely that H→bb is established before 2015, except if the results from all experiments are combined

Backup

Signal strength for various decays

Tevatron H→bb Results PRL 109,071804(2012)

- Last Summer:
 - $-\sigma_{VH} = 0.23 \pm 0.09 \text{ pb (SM: } 0.12 \pm 0.01 \text{ pb)} \otimes 125 \text{ GeV}$
- Now:
 - $-\sigma_{VH}$ =0.19+-0.09 pb, consistent with the summer results
 - The shift in this result is due to the updated ZH → vvbb analysis from CDF and corresponds to a change in the central value of 0.6 times the total uncertainty, consistent with the difference expected given the observed changes in the CDF ZH → vvbb

CDF results presented by T. Junk on January 18th:

http://theory.fnal.gov/jetp/talks/wc_trj_cdfhiggs_18jan_pub.pdf L. Ž. Higgs boson at Tevatron

Interpretation in non SM

• a

H->tautau

The Higgs Mechanism

- Essential ingredient of the Standard Model
 - Complex scalar field with potential
- Used to break the el. weak symmetry...

$$M_W = \frac{1}{2}vg$$
 $M_Z = \frac{1}{2}vg/\cos\theta_W = M_W/\cos\theta_W$

• ... and to generate fermion masses:

$$m_f = g_f v / \sqrt{2} \Rightarrow g_f = m_f \sqrt{2} / v$$

- Unitarity requires a scalar Higgs boson
 - or similar
 - cross section for WW scattering diverges like s/M_w^2
 - scalar Higgs boson cancels divergences

Systematics

- Luminosity: 6.1%
- b-tagging rate: 1-10%
- JES and JER ~7%
- Lepton id and similar: 1-9%
- Simulated backgrounds cross sections 4-30%
- MJ background 10-30%

LPNHE CDF and Dø experiments in Run II

Both detectors are upgraded in Run II

- New silicon micro-vertex trackers
- New tracking systems
- Upgraded muon chambers

An example of limits settings

 Compare Poisson likelihood of B hypothesis to S+B hypothesis, and calculate their negative log likelihood ratio (LLR):

	L(B)	L(S+B)	LLR
C	$\prod_{i} \frac{b_i^{d_i} \exp(b_i)}{d_i!}$	$\prod_{i} \frac{(s_i + b_i)^{d_i} \exp(s_i + b_i)}{d_i!}$	$2 \cdot \sum_{i} s_i - d_i \cdot \log(1 + s_i/b_i)$

- F where d_i events observed in bin i with S and B expectations s_i and b_i .

 or p_i in each bin (B) or s_i + b_i in each bin (S+B)
- Repeat many times to obtain LLR distribution: median is Expected LLR

S+B p-values

